Search results for " Random processes"

showing 10 items of 37 documents

How diffusivity, thermocline and incident light intensity modulate the dynamics of Deep Chlorophyll Maximum in Tyrrhenian Sea

2015

During the last few years theoretical works have shed new light and proposed new hypotheses on the mechanisms which regulate the spatio-temporal behaviour of phytoplankton communities in marine pelagic ecosystems. Despite this, relevant physical and biological issues, such as effects of the time- dependent mixing in the upper layer, competition between groups, and dynamics of non-stationary deep chlorophyll maxima, are still open questions. In this work, we analyze the spatio-temporal behaviour of five phytoplankton populations in a real marine ecosystem by using a one-dimensional reaction-diffusion-taxis model. The study is performed, taking into account the seasonal variations of environm…

Chlorophyll0106 biological sciencesLight010504 meteorology & atmospheric sciencesMixed layerlcsh:MedicineOceanographyRandom processeAtmospheric sciences01 natural scienceschemistry.chemical_compoundPhytoplanktonMediterranean SeaMarine ecosystemSpatial ecologySeawaterMarine ecosystem14. Life underwaterPhytoplankton dynamiclcsh:Science0105 earth and related environmental sciencesDeep chlorophyll maximumMultidisciplinaryEcology010604 marine biology & hydrobiologylcsh:RTemperaturePelagic zoneModels TheoreticalSpatial ecology; Marine ecosystems; Phytoplankton dynamics; Deep chlorophyll maximum; Random processes; Stochastic differential equationsSettore FIS/07 - Fisica Applicata(Beni Culturali Ambientali Biol.e Medicin)Light intensitychemistry13. Climate actionChlorophyllPhytoplanktonStochastic differential equationsDeep chlorophyll maximumEnvironmental sciencelcsh:QThermoclineAlgorithmsResearch Article
researchProduct

A subtle error in conventional stochastic linearization techniques

1998

Abstract The stochastic linearization technique as applied to the SDOF system is re-examined. Two standard procedures associated with the stochastic linearization, widely adopted in the literature, are shown to be erroneous. Two new procedures to correct the errors made in previous works are introduced. To gain more insight, the procedures are applied to the quintic oscillator. Comparative numerical analysis is performed.

Stochastic linearization; Random processesControl theoryLinearizationGeneral MathematicsApplied MathematicsNumerical analysisStochastic linearizationRandom processesGeneral Physics and AstronomyStatistical and Nonlinear PhysicsMathematicsQuintic functionChaos, Solitons & Fractals
researchProduct

Noise-induced enhancement of stability in a metastable system with damping

2010

5 páginas, 5 figuras.-- PACS number(s): 05.40.-a, 02.50.-r

PhysicsFluctuation phenomena random processes noise and Brownian motionCondensed matter physicsProbability theory stochastic processes and statisticFunction (mathematics)Stability (probability)Settore FIS/03 - Fisica Della MateriaProbability theory stochastic processes and statistics; Fluctuation phenomena random processes noise and Brownian motionColors of noiseMetastabilityQuantum mechanicsParticleFirst-hitting-time modelNoise (radio)Brownian motion
researchProduct

Role of noise in a market model with stochastic volatility

2006

We study a generalization of the Heston model, which consists of two coupled stochastic differential equations, one for the stock price and the other one for the volatility. We consider a cubic nonlinearity in the first equation and a correlation between the two Wiener processes, which model the two white noise sources. This model can be useful to describe the market dynamics characterized by different regimes corresponding to normal and extreme days. We analyze the effect of the noise on the statistical properties of the escape time with reference to the noise enhanced stability (NES) phenomenon, that is the noise induced enhancement of the lifetime of a metastable state. We observe NES ef…

Noise inducedProbability theory stochastic processes and statisticFOS: Physical sciencesEconomicFOS: Economics and businessStochastic differential equationStatistical physicsMarket modelCondensed Matter - Statistical MechanicsEconomics; econophysics financial markets business and management; Probability theory stochastic processes and statistics; Fluctuation phenomena random processes noise and Brownian motion; Complex SystemsMathematicsFluctuation phenomena random processes noise and Brownian motionStatistical Finance (q-fin.ST)Stochastic volatilityStatistical Mechanics (cond-mat.stat-mech)Cubic nonlinearityQuantitative Finance - Statistical FinanceComplex SystemsWhite noiseDisordered Systems and Neural Networks (cond-mat.dis-nn)Condensed Matter - Disordered Systems and Neural NetworksCondensed Matter PhysicsSettore FIS/07 - Fisica Applicata(Beni Culturali Ambientali Biol.e Medicin)Electronic Optical and Magnetic MaterialsHeston modelVolatility (finance)econophysics financial markets business and management
researchProduct

STOCHASTIC DYNAMICS OF TWO PICOPHYTOPLANKTON POPULATIONS IN A REAL MARINE ECOSYSTEM

2013

A stochastic reaction-diffusion-taxis model is analyzed to get the stationary distribution along water column of two species of picophytoplankton, that is picoeukaryotes and Prochlorococcus. The model is valid for weakly mixed waters, typical of the Mediterranean Sea. External random fluctuations are considered by adding a multiplicative Gaussian noise to the dynamical equation of the nutrient concentration. The statistical tests show that shape and magnitude of the theoretical concentration profile exhibit a good agreement with the experimental findings. Finally, we study the effects of seasonal variations on picophytoplankton groups, including an oscillating term in the auxiliary equation…

PhysicsGeneral Physics and AstronomySpatial ecology; Marine ecosystems; Phytoplankton dynamics; Deep chlorophyll maximum; Random processes; Stochastic differential equationsRandom processeSettore FIS/07 - Fisica Applicata(Beni Culturali Ambientali Biol.e Medicin)OceanographyStochastic dynamicsMarine ecosystemStochastic differential equationsSpatial ecologyDeep chlorophyll maximumMarine ecosystemPhytoplankton dynamic
researchProduct

Numerical investigation of optical heartbeats with external driving forces

2010

The role of harmonic and random external forces in a phenomenological nonlinear model of optical heartbeats is investigated. External forces trigger damped oscillations at the natural frequency of the system and higher harmonics. The numerical results are compared with experimental ones.

Fluctuation phenomena random processes noise and Brownian motionPhysicsClassical mechanicsNonlinear modelHarmonicsHarmonicGeneral Physics and AstronomyNatural frequencyMechanicsSettore FIS/07 - Fisica Applicata(Beni Culturali Ambientali Biol.e Medicin)Damped oscillationsMoscow University Physics Bulletin
researchProduct

Asymptotic regime in N random interacting species

2005

The asymptotic regime of a complex ecosystem with \emph{N}random interacting species and in the presence of an external multiplicative noise is analyzed. We find the role of the external noise on the long time probability distribution of the i-th density species, the extinction of species and the local field acting on the i-th population. We analyze in detail the transient dynamics of this field and the cavity field, which is the field acting on the $i^{th}$ species when this is absent. We find that the presence or the absence of some population give different asymptotic distributions of these fields.

Fluctuation phenomena random processes noise and Brownian motionPhysicsPhysics - Physics and SocietyFluctuation phenomena random processes noise and Brownian motion; Nonlinear dynamics and nonlinear dynamical systems; Population dynamics and ecological pattern formation; Complex Systemseducation.field_of_studySettore FIS/02 - Fisica Teorica Modelli E Metodi MatematiciExtinctionField (physics)PopulationFOS: Physical sciencesComplex SystemsPhysics and Society (physics.soc-ph)External noiseCondensed Matter PhysicsComplex ecosystemMultiplicative noiseElectronic Optical and Magnetic MaterialsProbability distributionQuantitative Biology::Populations and EvolutionStatistical physicsNonlinear dynamics and nonlinear dynamical systemeducationLocal fieldComputer Science::Distributed Parallel and Cluster ComputingPopulation dynamics and ecological pattern formation
researchProduct

Comparison of approaches for generation of fully non-stationary artificial accelerograms

2019

The modelling of the seismic input is a critical aspect when non-linear time-history analyses (NLTHAs) are carried out. As a matter of fact, seismic response of structures is very sensitive to the input excitation time history. The present work aims to highlight the differences in the input modelling and the assessment of seismic response of three r.c. structures employing four generation methods of fully non-stationary artificial accelerogram sets at a given construction site. For each method, seven accelerograms are generated and employed to perform NLTHAs on three r.c. structures having irregular mass and stiffness distributions. The original contribution of the paper relies in the crite…

Artificial accelerograms Fully non-stationary random processes Spectrum-compatible RC structuresSettore ICAR/09 - Tecnica Delle Costruzioni
researchProduct

Environmental Noise and Nonlinear Relaxation in Biological Systems

2012

We analyse the effects of environmental noise in three different biological systems: (i) mating behaviour of individuals of 'Nezara viridula' (L.) (Heteroptera Pentatomidae); (ii) polymer translocation in crowded solution; (iii) an ecosystem described by a Verhulst model with a multiplicative Lèvy noise. Specifically, we report on experiments on the behavioural response of 'N. viridula' individuals to sub-threshold deterministic signals in the presence of noise. We analyse the insect response by directionality tests performed on a group of male individuals at different noise intensities. The percentage of insects which react to the sub-threshold signal shows a non-monotonic behavior, charac…

Fluctuation phenomena random processes noise and Brownian motionSettore FIS/02 - Fisica Teorica Modelli E Metodi MatematiciNoise in biological systems; Biophysical mechanisms of interaction; Fluctuation phenomena random processes noise and Brownian motion; Molecular dynamics Brownian dynamics; Molecular interactions; membrane-protein interactionsMolecular dynamics Brownian dynamicMolecular interactionNoise in biological systemmembrane-protein interactionsBiophysical mechanisms of interaction
researchProduct

Dynamics of Two Picophytoplankton Groups in Mediterranean Sea: Analysis of the Deep Chlorophyll Maximum by a Stochastic Advection-Reaction-Diffusion …

2013

A stochastic advection-reaction-diffusion model with terms of multiplicative white Gaussian noise, valid for weakly mixed waters, is studied to obtain the vertical stationary spatial distributions of two groups of picophytoplankton, i.e., picoeukaryotes and Prochlorococcus, which account about for 60% of total chlorophyll on average in Mediterranean Sea. By numerically solving the equations of the model, we analyze the one-dimensional spatio-temporal dynamics of the total picophytoplankton biomass and nutrient concentration along the water column at different depths. In particular, we integrate the equations over a time interval long enough, obtaining the steady spatial distributions for th…

ChlorophyllPopulation DynamicsPopulation ModelingRandom processeAtmospheric scienceschemistry.chemical_compoundTheoretical EcologyWater columnMediterranean seaDeep chlorophyll maximumCalculusMultidisciplinaryEcologybiologyEcologyApplied MathematicsPhysicsQStatisticsRComplex SystemsStochastic differential equationsInterdisciplinary PhysicsMedicineDeep chlorophyll maximumProchlorococcusResearch ArticleChlorophyll aScienceStatistical MechanicsDifferential EquationsPhytoplanktonMarine ecosystemMediterranean SeaSpatial ecologyStatistical MethodsPhytoplankton dynamicBiologyComputerized SimulationsStochastic ProcessesPopulation BiologyAdvectionComputational BiologyRandom VariablesModels TheoreticalSpatial ecology; Marine ecosystems; Phytoplankton dynamics; Deep chlorophyll maximum; Random processes; Stochastic differential equationsProbability Theorybiology.organism_classificationMarine EnvironmentsSettore FIS/07 - Fisica Applicata(Beni Culturali Ambientali Biol.e Medicin)Nonlinear DynamicschemistryChlorophyllComputer SciencePhytoplanktonEcosystem ModelingMathematicsEcological EnvironmentsPLoS ONE
researchProduct